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A Simple Harmonic Oscillator Model of the Intrinsic Barrier to Group Transfer 

lkchoon Lee 
Department of Chemistry, lnha University, lnchon 160, Korea 

The intrinsic barrier in group-transfer reactions has been shown to correspond to the coupling 
energy of  two identical harmonic oscillators. It has also been shown that the barrier, A G x x f ,  can 
be represented as AG,,* = 4 f(rx - r J 2  + AGmf where rx is the distance to the crossing point of  the t w o  
oscillators and r, is the distance to the energy minimum. In considering a series of  related reactions, the 
force constant, f, can be regarded as constant within a particular series and the intrinsic barriers of  the 
series are shown to correlate with either approximate linearity of  positive gradient in the E region 
and negative gradient in the C region; or as a parabolic curve in the B region centred on the minimum. 

Examples of reactions belonging to each region are given and the fol lowing t w o  relations are 
shown t o  hold in all cases of  the intrinsic, controlled reaction series: 

r x = h o + r ,  h < O  
A logJpxyJ = koz k > 0 

where pxy is the cross-interaction constant between substituents in the nucleophile (X) and 
substrate (Y), cfz is the substituent constant for the leaving group, and h and k are constants. 
Thus these two relations constitute important criteria for intrinsic- barrier controlled reaction series. 
For thermodynamically controlled reaction series, the sign of  the two constants is reversed, i.e. h > 0 
and k < 0. 

The Marcus equation (1) ' expresses the kinetic barrier, AG *, as 

AGS = AG* + AGo0/2 + (AG0)2/(16AGOS) (1) 

the sum of an intrinsic, AGOx, and the thermodynamic, AGO, 
barriers,* together with a second-order term.? Although the 
Marcus equation was originally derived for electron-transfer 
reactions in solution,'" it has been shown to apply to hydrogen- 
atom transfers,Ib proton transfers,ld and group transfers, 
especially methyl-transfer reactions (2).1e-i 

X -  + CH,Y F+ XCH, + Y -  (2) 

With the advent of ion cyclotron resonance (i.c.r.) 
spectroscopy, studies of gas-phase SN2 reactions have provided 
a direct means of determining experimentally the intrinsic bar- 
riers involved in the gas-phase methyl-transfer reactions.1e,f*2 
Alternatively, several elegant studies involving solution-phase 
methyl-transfer reactions by Lewis et aL2v3 have provided 
kinetic data from which the intrinsic barriers can also be 
determined for solution-phase reactions. 

Theoretically the intrinsic barriers can be obtained by MO 

*The free-energy form of equation (1) is usually used for 
solution-phase reactions, but the application of the potential-energy 
form: 

A E t  = AEof + A P / 2  + (AE0)2/16AE0' (1') 

is more intuitive and appropriate for gas-phase and theoretical studies. 
t For solution-phase reactions, the work terms, which are largely made 
up of solvent-solute interactions, should be included in equation (1). 
However they are independent of structure throughout a series of 
related reactions and hence if the solvent is constant, the work terms can 
be dropped from the Marcus equation lg as in equation (1). 
f Errors in AEx,* are reported to be within a few kcal mol-l.lf 

lu 
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Figure 1. Double-well potential-energy surface for the gas-phase identity 
S,2 reaction, X -  + CH,X e XCH, + X-. - 

calculation as the energy difference between the transition 
state (TS) and the ion-molecule cluster, i.e., the height of the 
central barrier in Figure 1. For an identity-exchange reaction, 
X = Y in equation (2), AEo = 0 so that the activation barrier 
becomes equal to the intrinsic barrier,* A E *  = AEoS. 

Comparison of experimental If and theoretical intrinsic 
barriers for some of the identity-exchange reactions is given in 
Table 1 and agreement between the two is only moderate. 
However this is understandable considering the difficulties in 
determining experimental values $ and the adequacy of the use 
of the 4-31G basis set for this type of ca lc~la t ion .~  

Various interpretations of the significance of the intrinsic 
barrier are offered. ( i )  Brauman et al. 'f correlated the gas-phase 
identity-exchange barriers, AExx*, with the methyl-cation 
affinity Em, of the nucleophile defined as the heterolytic-bond- 
dissociation energy of the CH,-X bond. 
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Table 1. Comparison of experimental (gas-phase) and theoretical (4- 
31G level) values of AExxt (kcal mol-I) for X- + C H , X F t  
XCH, + X-. 

X 
HCC 
CN 
C H 3 0  
CH3S 
F 
C1 
NC 
OH 
OF 
OOH 

Expt.lS T h e ~ r e t . ~  
41.3 50.4 
35.0 43.8 
26.6 23.5 
24.2 15.6 
26.2 11.7 
10.2 5.5 
- 28.5 
- 21.2 

18.8 
18.5 

- 

- 

CH3X __+ CH3+ + X- 
A H o  = E,,(X-) = Do(CH3-X) - E,,(X) + Ei(CH3) 

where Do is the bond dissociation energy, E,,(X) is the electron 
affinity of the X radical and Ei(CH3) is the methyl-radical 
ionization potential. They interpreted the correlation as a 
consequence of charge separation in the trigonal-bipyramidal 
penta-co-ordinate (TBP-SC) TS, (1) of the exchange reaction. 

H 
I 

(ii) Wolfe et aL4" correlated their AExxs values calculated using 
the 4-31G basis set with the deformation energies, Alldef, of 
CH3X in the TBP-SC TS formation, especially with the C-X 
stretching energies, AER. 

Although these rationalizations seem reasonable, they are 
unsatisfactory in two respects. (i) These correlations deal with 
deformation energies of CH3X only, whereas the AExx* values 
should reflect energy changes in both CH3X and the nucleophile 
X- which is shown by the existence of a TS structure, (1). (i i)  All 
Xs are included arbitrarily in a single correlation. The present 
work seeks to show that any such correlation should be made 
for distinct groups according to the period of the bonding atoms 
as, H-; OH-, F- ,  CN-, etc.; C1-, SH-, etc., since the central 
carbon in CH3X is fixed.6 * 

Discussion 
Simple Harmonic Oscillator Model.-The TBP-SC TS, (l), of 

an identity sN2 reaction can be represented as two identical 
harmonic oscillators, C-X, with force constant f which are 
symmetrically coupled as in Figure ~ ( L z ) . ~  The crossing point of 
the two oscillators at rx provides a common energy for the 
coupled system and the height of the barrier at rx, which is the 
intrinsic barrier Ah',,$ defined in Figure 1, is given by 

* Badger's rule was shown to hold also for the TBP-5C TS, (I), and the 
parameter aij obtained indicated that the carbon centre in the TS had a 
covalent bond radius of a fourth-row element, i.e., the median bond 
length of the series is far longer in the TS than that expected for the 
normal bonds of the first-row element. This dramatic stretching of the 
covalent radii in the TBP-5C TS provided a median intrinsic barrier, 
AEoot, which is common to the series at rx = ro.  

B 

V.. 0 -  

A 

rx ' rx T o  r 

( b )  rx < r o  

Figure 2. Coupling of the two harmonic oscillators. Oscillators, B and C, 
cross oscillator A at rx and rx' giving barriers, AE,,*, between them. 

where AEoos is a median barrier for the series at rx = ro.6 
Similarities in the potential-energy profiles in Figure 1 and 2 are 
obvious. As the two oscillators separate, the crossing point, rx 
appears at a greater distance and the barrier height rises 
accordingly. This corresponds to a larger stretching vibration in 
the TBP-5C TS, (1). 

When rx is shorter than ro as in Figure 2(b), equation ( 3 )  still 
applies; the shorter rx, the higher the barrier, and hence AExxs 
will be greater. 

This model may be more accurate as rx'v  yo, since the 
harmonic-oscillator model of the potential-energy function is 
especially applicable near the bottom of the well. 

According to equation (3) ,  the intrinsic barrier to the identity 
sN2 reaction (2)  with a particular X( = Y) can be given by a point 
on a parabolic curve for a harmonic oscillator, A, in Figure 2. If 
the stretching, rx, in the TBP-5C TS, (l), is greater than that of a 
hypothetical minimum at r,,? the barrier will be represented as 
a point on the right-hand branch of the curve; the intrinsic 
barrier originates in the stretching or expanding beyond ro (E 
region). Alternatively if rX < ro, then the barrier will be 
represented by a point on the left-hand branch of the curve; the 
intrinsic energy corresponds to the compression energy (C 
region). Therefore, any intrinsic barrier should belong to either 
the C or the E region. However, near the bottom of the well, i.e., 
rx N yo, a different relation will apply (see below) between 
AExxt and rx so that a borderline (B) region is formed, as 
shown in Figure 3. 

t This minimum point may not always be observed in practice, since 
the range covered by a series is usually small; it is only when the 
reaction series covers the B region, in Figure 3, that the minimum 
point is encountered. 
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Figure 3. A parabolic curve representing three regions. Two points on 
each region of the curve correspond to the two crossing points given in 
Figures 2(a) and 2(6), respectively. 

Application.-Let us now consider a series of n related 
identity (X = Y) SN2 reactions, (2), with X = X, ,X2 , .  . . . . X,. 
The intrinsic barrier can be calculated approximately using 
equation (3) for each member of the series as: 

A E , , ~  = ff, ( r ,  - ro)2 + AE,,% 
AE2,% = f f 2  ( r 2  - ro)2 + AEoos (4) 

I 

I 

I 

AE,,s = 4 f, (r,  - ro)2 + AEoo% 

Making the further assumption that in this series the force 
constant is almost invariant so that f l  'v f 2  . . . . . N f,, the n 
equations, (4), can be combined to give equation (3). 

AExx$ = + f ( r X  - ro)2 + AEoo% (3) 

If for this series, rx values were greater than ro, the intrinsic 
barriers, AExxs, will be given by points in the E region of a curve 
similar to that in Figure 3 and will form an approximately 
straight line provided the range covered by 6AExxs or rx - ro 
is sufficiently small, i.e., equation (5) will apply and have a 
positive slope, a. 

6AExxf = a(rx - ro) ( 5 )  

Similarly, if for the series rx < y o ,  the AExxs values will be 
linearly related to ( rx  - ro) with a negative slope a in the C 
region. When, however, rx values are not much different from ro, 
rx N ro i.e., in the B region, no such linearity will be expected 
but parabolic behaviour will be observed in accordance with 
equation (3). We emphasize that for any series of identity- 
exchange reactions the intrinsic barriers should belong to one of 
the regions, E, C, or By provided the range covered by the series 
is sufficiently small. 

Example 1.-The identity S,2 reactions (2) (X = Y) with 
anionic nucleophiles or nucleofuges of the first-row elements, X - 
= F, O H  etc4v6 The ab initio MO theoretical results with 4- 
31G basis set on rx,fx, and AExx% are summarized in Table 2. 
Plots of AExxt us. rX yielded a straight line with a positive slope, 

* When the data were fitted to equation (3), multiple correlation 
coefficient l 6  was little better (0.984) than the linearity, with ro = 
1.708 A, f = 3.071 mdyn A-' and minimum energy of AEoo* = 9.8 kcal 
mol-'.6 

Table 2. The distance, rX /&  force constants, fx/mdyn A-', of the 
C-X bond in the TS, (l), and the intrinsic barrier, AExx*/kcal mol-', 
calculated using the 4-31G basis set for reaction: X- + CH,X= 
XCH, + X- (mdyn A-' = lo2 N m-'; 1 kcal = 4.184 kJ). 

X -  

CH, 
CCH 
C N  
N C  

OF 
OCH, 
OOH 
O H  
F 

NH2 

r X 6  

2.161 
2.124 
2.112 
2.014 
2.008 
1.932 
1.924 
1.920 
1.909 
1.827 

fx" 
1.998 
1.913 
2.417 
2.702 
2.795 
3.194 
3.232 
3.28 1 
2.317 
2.674 

AEXXt4 

50.4 
43.8 
28.5 

18.8 
23.5 
18.5 
21.2 
11.7 

- 

- 

1 E region ( r x  >ro 1 
I 
I I 

I 
I 

I 

X=CCH 

I I 

r0 

rX 

XCH, + X-,  (4-316 results). 
Figure 4. Approximate straight line in the E region for the identity S,2 
reactions, X-  + CH,X 

a (124.85) and correlation coefficient of 0.973 * i.e., equation ( 5 )  
holds with a > 0. Thus the series belongs to the E region, Figure 
4. The range of the intrinsic barrier covered in this series was 
relatively wide, 6AExx% ca. 40 kcal mol-'. 

How can we rationalize this linearity? There are two aspects 
to consider. (i) Why is the slope, a, positive? i-e., why is the 
AExxs higher when rx is greater? (ii) Why does the force 
constant behave as an apparent invariant despite the substantial 
variation in fx values in Table 2? We will elaborate on these 
questions in detail. 

(a)  In general the total energy change, AET, involved in the 
two interacting systems can be represented as a sum of 
deformation, AEdef, and interaction, AE,,, energies. The 
former is positive, AEde, > 0, and is greater than the negative 
value of the latter, AE,, < 0. 

Of the four major component energies comprising AEr,,9 
i.e., electrostatic AE,,, exchange repulsion AEex, polarization 
AEpl and charge transfer AE,,, energies, the charge-transfer 
interaction is the most important stabilizing component 
especially for a relatively short-range interaction as in the TS. 
This interaction is operationally important lo since this is the 
interaction which leads to bond formation and bond breaking 
by the overlap of the incoming donor or occupied orbitals in the 
nucleophile, X- ,  and the acceptor or empty orbitals of the 
substrate, CH,-X. The stabilizing interaction energy, AE,,, can 
be approximated Oa as: 
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Table 3. The LUMO (azx) levels for some CH,X compounds together 
with rx and AExxt values. 

a,*,/eV 
r AExxtI 

CH3-X CNDO/2 ab initio rx/A kcal mol-' 
CH3-F 9.88 - 1.827 11.7 

CH,-NH, 12.17 14.91 2.008 38.0 
CH,-OH 11.13 13.06 1.909 21.2 

CH,-CH, - 15.56 2.161 - 

where AEFMO is the energy gap between the highest occupied 
molecular orbital (HOMO) of the nucleophile, which is n, and 
the lowest unoccupied molecular orbital (LUMO) of the 
substrate CH3X, which is ozx*, i.e., AEFMO = LUMO (ozx) - 
HOMO (n), and Hij is the matrix element which is propor- 
tional to the overlap, Hij  K Sij. In the SN2 reaction, variation in 
the energy gap, ~AEFMO, is known to have an overwhelming 
influence on changes in 6AEc, relative to 6Hij2 ,  i.e., it is energy- 
gap controlled.lO" The ozx levels of some substrates, CH3X,loa 
are listed in Table 3 together with the rx and AE,,*  value^^.^ 
from Table 2. Inspection of Table 3 reveals that the higher the 
oz,, the higher the barrier, AE,,*. This is reasonable since a 
higher o& will give a greater AEFMO and hence a lower stabilizing 
energy AEC,*. This means that the leaving ability of X is greater 
for lower o&. Thus Table 3 shows that the reactivity (lower 
AExxf) follows the order of the leaving-group ability (lower 
ozX).lo Consequently the degree of bond breaking of the C-X 
bond will be substantially greater than that of bond formation 
of the X-C bond, and the TBP-5C TS for this series is rather 
loose with a positive charge on the reaction centre carbon, as in 
(1). This also means that the HOMO, n, level of the nucleophile, 
X-, will have little effect on AE,, and hence on AExxs. Thus the 
degree of bond breaking i.e., the increase in r,, is the major 
degree of freedom" in the TBP-5C TS and constitutes a 
principal reaction co-ordinate, thus, is the only important 
contribution to the transition vector. Hence the greater the 
degree of bond breaking, the further the reaction has progressed 
along the reaction co-ordinate.' ' 

According to the principle of narrowing of inter-frontier-level 
separation,'* the LUMO level is lowered and the HOMO 
raised as the reaction progresses along the reaction co-ordinate, 
while the total energy of the reacting system rises until the TS is 
reached. Thus in order for the reaction to proceed, charge needs 
to be transferred from the n level of the nucleophile to the ozx 
level to effect bond-breaking and formation, which leads to a 
stabilizing orbital interaction but causes more deformation, 
increasing ALEdef. The two opposing effects are optimized in the 
TS. By progressing along the reaction co-ordinate with 
increased stretching i.e., a greater degree of bond breaking, the 
E~~ is lowered further and the resulting decrease in AEFMO will 
give rise to a greater stabilizing interaction, AEct. Thus the 
higher the cLU, the greater will be the rx and hence the greater 
will be AExxs. 

A similar concept has been applied by Pross and Shaik l o b  in 
their valence-bond configuration-mixing approach to the pre- 
diction of the SN2 TS structure. They concluded that the C-X 
bond in the good electron acceptor (CH,X), for which the ozx is 
lower, has to stretch less than in the weak acceptor, for which 
the ozx is higher, in order for the reacting system to cross over 
the activation barrier. 

(b) We now examine the reason why the force constant f 
appears to be invariant within the series. The variation of AExx* 
can be attributed to two separate contributions as in equation 
(8). 

J. CHEM. SOC. PERKIN TRANS. 

= 9 (rx - ro)2 Sfx + f x  (rx - ro) 6rx 

The ratio of the two partial derivatives, Rd, is given by 

It has been shown for the TBP-5C TS of the reaction series (2) 
that Badger's rule,' equation (lo), holds. 

where a and b are positive constants depending on the rows of 
the periodic table for the two bonding atoms. For the present 
series, the two atoms being bonded are the first-row elements, 
ie.,  1-1 series, with a = 7.985 and b = O.47tL6 This is why any 
correlation involving rx andf, should be considered in separate 
groups according to which rows of the periodic table the 
bonding atoms belong.6 The variation of the two are therefore 
related by equation (10) as, 

The ratio, QE, of the two energy contributions by rx andf, to 
the total changes in AExxt can be given by, 

Substitution of rx ,  yo, and b leads to & = 19.8, QE = -3.3. 
The Rd value of ca. 20 indicates that the barrier change, 6AE,,' 
(kcal mol-'), due to the unit change in rx(A) is ca. 20 times 
greater than that due to the unit change inf,(mdyn A-'). For 
the particular reaction series in Table 2, the total contribution 
from the increase in rx to the increase in the intrinsic barrier, 
AExxs, is more than 3 times greater than that from the decrease 
infx(QE < 0), and hence 6AExxs will be relatively insensitive to 
the variation inf,. Thus thef, values within the series appear to 
constitute a parameter which changes little within the small 
range of rx change. Equation (12) indicates that the smaller 
frx - r,l, or the greater lbl, the greater will be the magnitude of 
QE and hence the less variable a particular f value will 
become. Thus in the B region, where lrx - rol=O, equation (3) 
will hold accurately and AExx* will become a true quadratic 
function of ( rx  - ro). We can summarize the results of the first 
example as follows. 
(a) The reactivity follows the order of leaving group (LG) 

ability; a better LG has a lower barrier and hence is more 
reactive. Thus the degree of C-X bond breaking is substantially 
greater than that of X-C bond formation so that the TBP-5C 
TS has a loose structure with a positive charge on the reaction 
centre carbon, as in (1). 

(b) There is approximate linearity between the intrinsic 
barrier, AExxs, and the C-X bond distance, r,, in the TS with a 
positive slope, a. 

6AExx* = a(rx - ro)  ( 5 )  

rx > ro and a > 0 
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- 1  E region ( r x  > r o  ) 
Table 4. Intrinsic barriers, AGxxf, for reaction (13) of example 2. 

X GAGxxf/kcal mol-' Q 

p-Me0 0.22 - 0.27 
p-Me 0.06 -0.17 
Ha 0.00 0.00 
p-c1 -0.28 0.23 
3,4-C12 -0.69 0.60 

a AGxx: = 24.92 kcal mol-I. 

(c) A worse LG has a higher LUMO, aZx, and in order to 
lower the LUMO so that smaller inter-frontier level gap (AcFMO) 
is obtained for a greater charge-transfer stabilization (A&*) in 
the TS, a greater degree of bond breaking is required as the 
reaction progresses. This results in a greater deformation energy 
of the TS giving a net increase in the intrinsic barrier. 

Example 2. Solution-phase methyl-transfer reactions, (1 3), 
have been reported by Lewis et a1.Ig We obtained the intrinsic 
barriers, AGxxS, from their activation parameters, 

A H  and AS$,  as shown in Table 4. For this series, the Brernsted 
coefficients PN and pL were +0.37 and -0.63, respectively, 
giving a positive charge of +0.25 on the central c a r b ~ n ' ~ . ~ ~  
in the TBP-5C TS, (2). An electron withdrawing substituent 

in the LG will stabilize the developing negative charge on the 
LG so that it will enhance the LG ability; in theoretical MO 
terms this corresponds to the lowering of the LUMO level by an 
electron-withdrawing substituent,' ' which will reduce the inter- 
frontier level gap, and increase the charge-transfer 
stabilization, equation (7).loa Reference to Table 4 reveals that 
the LG with a more electron-withdrawing substituent, i.e., a 
better LG, gives a lower barrier, AGxxr; the reactivity trend is 
therefore in the order of LG ability. 

A substantial positive charge on the central carbon (+ 0.25) 
together with this reactivity trend is a clear indication that this 
reaction series belongs to the E region (rx > ro) by analogy with 
example 1. 

Thus the TBP-5C TS, (2), will be relatively loose and bond 
breaking will considerably exceed bond formation. Moreover 
the range of 6AGxxx covered in this series is very small indeed, 
with only 0.9 kcal mol-'. Therefore, the intrinsic barrier, AGxxS, 
should be linearly related to r x ,  by equation (9, with a positive 
slope a, Figure 5. 

* In the cross reaction [X + Y in equation (2)], the intrinsic barrier 
is given by the average value, i.e., AGOt = AGxyS = 4 (AGqXxt + 
AG,,'). Introducing this with Y = H into equation (l), and solving for 
AGxx' in terms of AGix, AGHX', and AGHH' gives 

Neglect of the second-order term in equation (1) simplifies this to 
AGxx' = 2AG,xf - AGHH' - AGix. 

*Me0 

2 

r0 

TX 

Figure 5. Approximate straight line covering small portions of the E 
region for the reaction (1 3) of example 2. 

~AG,,$ = a(rx - yo) ( 5 )  
rx > ro and a > 0 

On the other hand, plots of AGxx* us. Hammett substituent 
constants o l6  gave an excellent linear correlation, (14), with a 

(14) ~AG,,# = -1.020 

negative slope and correlation coefficient of 0.993. This is 
remarkable and gratifying in view of the uncertainties involved 
in the experimental determination of activation parameters. lg 
Comparison of equations (5) and (14) leads to 

or 

rx = LO + ro 
Ar = ho, h < 0 

where h is a negative constant. This relation shows that the C-X 
bond stretch, rx ,  in the TS is linearly related to O. Since rx is the 
principal reaction co-ordinate in this series belonging to the E 
region, we may conclude that o is linearly related to the reaction 
co-ordinate, provided the change in the reaction co-ordinate, Ar, 
is not large.' 

Example 3.-Solution-phase phenacyl-group transfer re- 
actions (16) have been reported by Lewis et aL3' For this 

reaction, we calculated AG,,', AGHH$, and AGHxt values from 
their kinetic data, and then estimated the intrinsic barriers, 
AGxxS, using the Marcus equation.* Neglect of the second- 
order term in equation (1) gave less accurate values of AGxxT, 
but the mean difference between the two was only 40.01 kcal 
mol-' with a maximum difference of only k0.03 kcal mol-', 
which is certainly negligible considering the experimental 
uncertainties in determination of AGHHS and AGHx$ values. 
Nevertheless we used the values by the former method, which 
are summarized in Table 5. 

For this reaction series, the Brmsted coefficients PN and pL 
were +0.74 and -0.26 respectively, giving a large negative 
charge of - 0.48 on the reaction centre carbon in the TS, (3).3'*'4 

Furthermore, reference to Table 5 reveals that the reactivity 
trend follows the order of nucleophilicity; a more electron- 
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Table 5. Intrinsic barriers, AGxxT, for reaction (16) of example 3. 

X 
p-Me0 
p-Me 
H b  
P-F 
p-C1 
m-CF, 
3,4-C12 

FAG,,*/kcal mol-' (T 

- 0.23 -0.27 
- 0.98 -0.17 

0.00 0.00 
0.02 0.06 
0.38 0.22 
0.76 0.43 
0.89 0.60 

a Excluded from our discussion of the Hammett-type plot. AGHHS = 
25.03 kcal mol-'. 

Table 6. Intrinsic barriers, AGxxt, for reaction (18) of example 4. 

X GAG,,*/kcal mol-' (T 

P-Bu' 0.45 - 0.20 

p-c1 0.44 0.22 

p-Me 0.30 -0.17 
Ha 0.00 0.00 

m-C1 0.34 0.37 
3,4-c12 0.74 0.60 

a AG,,f = 36.55 kcal mol-'. 

donating substituent in the nucleophile, increases nucleo- 
philicity '* which leads to a lower barrier, AGxx%, and therefore 
a greater reactivity. This reactivity trend as well as the large 
negative charge on the reaction-centre carbon is quite contrary 
to those found for examples 1 and 2, and indeed indicates that in 
this reaction series bond-formation is ahead of bond- breaking 
and the TBP-5C TS, (3), is relatively tight so that the bond 
stretching rx in the TS is shorter than ro. Thus the reaction series 
belongs to the C region, in which a linear correlation (5) 
between AGxxS and (rx - yo) should hold with a negative slope, 
a, since, again, the range covered by 6AGxx% (ca. 1.10 kcal mol-l) 
is small (Figure 6). 

6AGx,% = a(rx - Yo) (5) 
rx < ro and a < 0 

Alternatively, plots of AGXxS us. 0 gave a good linearity with a 
positive slope and a correlation coefficient of 0.988. The slope 
being positive is an indication that this series belongs to the C 
region, unlike the series in the E region, example 2, where the 
slope was negative. 

6AGxxS = 1.89 0 (17) 

Comparison of equations (5) and (17) yields, equation (15) 
which is exactly the same relation as that obtained in example 2. 
Thus in this series also, rx is greater (Ar > 0) for a more 
electron-donating substituent ((T < 0) than for a more electron- 
withdrawing substituent (0 > 0), although all rx values are 
smaller than ro in contrast with those in examples 1 and 2. We 
can rationalize this apparent contradiction as follows. 

In this reaction series, the reactivity follows the order of 
nucleophilicity, and bond formation exceeds bond breaking, 
leading to a tight TS. This indicates that in this reaction series 
the degree of bond formation provides a principal reaction co- 
ordinate, i.e., the greater the degree of bond formation, the 
further the reaction has progressed along the reaction co- 
ordinate. This means that the inter-frontier-level gap, AEFM0, is 
mainly determined by the HOMO, n, of the nucleophile with the 
LUMO, o,*, of the substrate l o  having little effect. Since a more 

" I  
TX 

Figure 6. Approximate straight line covering small portion of the C 
region for reaction (16) of example 3. 

electron-withdrawing substituent in the nucleophile depresses 
the HOMO level,15 elevation of the HOMO level is needed to 
gain the required charge-transfer stabilization by decreasing the 
inter-frontier-level gap, AEFMO, in equation (7).' In order to 
elevate the HOMO of the nucleophile, further progress along 
the reaction co-ordinate, ix., a greater degree of bond 
formation, is necessary. Note that in this series bond formation 
is the principal reaction co-ordinate so that an increase in the 
reaction co-ordinate brings a greater degree of bond formation, 
i.e., a shorter rx in the TS. 

Thus a more electron-withdrawing substituent in the nucleo- 
phile, reduces nucleophilicity, and requires a greater degree of 
bond formation, i.e., a smaller rx giving a greater AGXx$ since 
the series belongs to the C region, i.e., rx < yo. 

Example 4.-Solution-phase methyl-transfer reactions have 
been studied with thiophenoxides, equation (18)? From the 
reported rate constants, AGHxO, AGHHS, and AGHXS values were 
obtained and the intrinsic barriers, AGxxS, were estimated using 
the Marcus equation as summarized in Table 6. 

For this series, the Brernsted coefficients PN and pL were 0.54 
and -0.46 respectively, giving a very small negative charge of 
-0.08 on the reaction centre in the TS, (4). 

- 0.46 - 0.08 - 0.46 
XC6H4S - - - - C - --- SCgH4X 

(4) 

Inspection of Table 6 reveals that for this series there is no trend 
in the reactivity vs. nucleophilicity or LG ability as a whole; 
there is no linearity between AGxx% and rx - yo so that this 
series does not belong to either the E or C region. The 
circumstances thus suggest that this series belongs to the B 
region, in which rx values are near ro (Figure 7). Moreover the 
AGX,$ values are not linearly related to 0 but are a quadratic 
function of (T, equation (19), which suggests the same quadratic 

correlation between AGxx$ and rx - ro ,  equation (3), for the 
series in the B region, (Figure 3). 

AGxxS = $ArX - ro)2 + AGO,$ (3) 

Comparison of equations (3) and (19) again leads to equation 
(5) .  
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T O  

rX 
Figure 7. Parabolic curve covering the B region (rx cz ro)  for 
reaction (1 8) of example 4. 

Figure 8. The S,2 TS with three fragments, i.e., nucleophile (X), 
substrate (Y), and LG (Z). R,, R,, and R, represent reaction centres in 
each fragment. 

or 

rx = ho + ro 
Ar = ho, h < 0 

( 5 )  

Since this series covers small portions of both the E and C 
regions, h should be negative as it is in both the above regions. 
In the B region, rx N ro so that Irx - rol should be small; as a 
consequence, the range covered by AGxxs should also be small 
according to equation (3), as was found for this series, 6AGxXs 
ca. 0.7 kcal mol-'. 

Another example of reaction series in the B region is the 
solution-phase methyl-transfer reactions with seleno- 
p h e n ~ x i d e s , ~ ~  (20). We also found the same relations, (3), (5) ,  and 

(19), although for this series the reaction-centre carbon had a 
substantial negative charge of -0.24.3c The range of AGxxS 
covered here was also found to be small, 6AGxxs ca. 0.7 kcal 
mol-'. 

We conclude that (i) In the E and C regions, the intrinsic 
barrier, AGXxf, is approximately linearly related to both rx and 
o, especially when the range covered is sufficiently small. 

6AGxxs = a(rX - yo) 

6AGxxS = Po 

where C( > 0 and p < 0 in the E region, while the signs reverse to 

* The Marcus equation, ( l ) ,  shows that either the intrinsic barrier, AGOS, 
or the thermodynamic barrier, AG ', can be dominant in determining 
the activation barrier, AG *, and hence the reactivity, since the second- 
order term is normally negligible (see example 3 in the text) and see 
footnote * above. A cross reaction series (X f Y) will be intrinsic- 
barrier controlled when (i) AGO = 0, (ii) 6AGS = 0, or (iii) 
6AG' K &AGO. We have dealt with in this work only the case (i). 
Likewise, for the thermodynamically controlled series there will be three 
cases equivalent to those above. 

a < 0 and p > 0 in the C region. The sign of p provides, in fact, 
a criterion for determining the region between E and C. 

(ii) In the B region, no such linearities are expected but 
quadratic relations hold instead. 

AGxxs = a'(r, - ro)2 + AGoot 
6AGxxS = P'02 

where a' and p' are positive constants. Again the quadratic 
relation between AGxXi and o provides a criterion for the B 
region. 

(iii) In all regions, the bond length rx in the TS is linearly 
related to the Hammett substituent constant o, with a negative 
slope, h. This correlation should be a fundamental one for the 

or 
rx = ho + ro 
Ar = ho, h < 0 

intrinsic-barrier controlled reaction series,* in which the effect 
of thermodynamic contribution on activation barriers is neg- 
ligible. 

(iv) A corollary of conclusion (iii) is that for a more electron- 
donating substituent in the nucleophile (ox < 0), i.e., a stronger 
nucleophile, a greater degree of bond breaking, (Aryz > 0), is 
obtained whereas for a more electron-withdrawing substituent 
(oz > 0) in the LG, i.e., a better LG, a greater degree of bond 
formation (Arxy < 0) is obtained. These predictions of the TS 
variation are consistent with those of the quantum-mechanical 
(QM) model.'0b Thus, 

Aryz = ho, 
Ar,, = ho, withh < 0 (21) 

where subscripts X, Y, and Z denote substituents in the nucleo- 
phile, substrate, and LG respectively 

Finally, use of our recently derived relationship between the 
cross interaction constant, pij, and rij, equation (22),17b together 
with equation (21) leads to a useful set of relations, equation (23). 

(Figure 8). 

where A and B are positive constants depending on the rows of 
the periodic table for the two bonding atoms.13 

Since in the ordinary cross-reaction series it is difficult to discern 
whether a particular series is intrinsically controlled or not,20 
equation (23) provides useful criteria for such purposes. 

Examples of the intrinsic-barrier controlled series are found 
in the results of our recent kinetic studies, series (i)-(iv), for 
which k values were indeed positive and all substituents effects 
were in agreement with the predictions of the QM model. 
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In contrast with these reaction series, reaction (0) had 
a negative k so that the series can be ruled out as an intrinsic- 
barrier controlled one. This series is in fact known to be 
thermodynamically controlled. The negative sign of h in the 
thermodynamically controlled series leads to a positive h in the 
following relations 

Arxy = ha, 
ArYz = ho, with h > 0 

These relations indicate that a more electron-withdrawing 
substituent (oz > 0) in the LG will give a greater bond 
distance rxy, i.e., less bond formation and a more electron- 
donating substituent in the nucleophile, (ox < 0), will give a less 
bond-breaking, i.e., a smaller ryz;  this is consistent with the 
predictions of the TS variation by the potential-energy surface 
(PES) mode1.’5b,20~25 It has been shown that the PES model 
applies to the thermodynamically controlled reaction series2’ 
Thus two sets of equations (21) and (23) provide useful criteria 
for determining the nature of the reaction series, i.e., whether a 
series is intrinsically controlled in which case the QM model 
applies, or thermodynamically controlled in which case the PES 
model applies.’ob,20 There will be many reaction series for 
which no clear-cut classification of the nature of the reaction 
series is possible.20 
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